I-39

REACTIONS OF PHOSPHORUS FLUORIDES AND ORTHO-CARBORANE DITERTIARY AMINOPHOSPHINES

C. B. Colburn*, W. E. Hill, L. M. Silva-Trivino and R. D. Verma. Department of Chemistry, Auburn University, Auburn, Alabama 36849 (U.S.A.)

Fluorophosphine bidentate ligands containing σ -carborane as backbone can be prepared by the reaction of the lithium- σ -carboranes and PF₂X derivatives to give only two species: the unsymmetrical (C_6H_5)₂P[$B_10H_10C_2$]PF₂ and the cyclic FP[$B_10H_10C_2$]₂PF, both in low yield. However, exchange of F and NMe₂ groups by use of PF₅ or PF₃ provides a facile way to produce several new fluorophosphines.

Phosphorus pentafluoride forms solid adducts with the o-phosphino derivatives $(C_6H_5)_2P[B_{10}H_{10}C_2]P(NMe_2)_2$, $(Me_2N)_2P[B_{10}H_{10}C_2]P(NMe_2)_2$ and $(C_6H_5)_2P[B_{10}H_{10}C_2]H$. All the adducts contain a phosphorus-phosphorus bond as evidenced from i.r., NMR and stoichiometry. The stability of the adducts reflects the strength of the P-p bond formed upon complexation. When suspensions or solutions of the adducts are heated they exchange F and NMe_2 groups and no redox occurs. The products $(C_6H_5)_2P[B_{10}H_{10}C_2]P(F)NMe_2(I)$ and $Me_2N(F)P[B_{10}H_{10}C_2]P(F)NMe_2(II)$ react further with PF_5 giving $(C_6H_5)_2P[B_{10}H_{10}C_2]PF_2(III)$ and $F_2P[B_{10}H_{10}C_2]PF_2(IV)$.

The precursors also react with phosphorus trifluoride to produce only (i) and $(Me_2N)_2P[B_{10}H_{10}C_2]P(F)NMe_2(V)$ regardless of the reaction conditions. All the products I-V have been identified by 1H , ^{19}F , and ^{31}P NMR and i.r. spectroscopy, mass spectrometry, and elemental analysis. The NMR spectra of the novel (IV) have been analysed as $X_2AA^2X_2^1$ spin system.

I-40

FLUOROSULFATES OF GROUP(IV) ELEMENTS

S. P. Mallela*, K. C. Lee and F. Aubke

Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Y6 (Canada)

Synthesis of binary and ternary fluorosulfates of tin and germanium by metal oxidation in a HSO₃F/S₂O₆F₂ mixture is investigated. Attempts to obtain Ge(SO₃F)₄ resulted in the formation of GeF₂(SO₃F)₂. Instead Ge(SO₃F)₄ has been stabilized by the formation of M₂[Ge(SO₃F)₆] (where M = Cs or ClO₂) complexes. In the tin system simple alternative routes to the previously known Sn(SO₃F)₄ and M₂[Sn(SO₃F)₆] are found. In addition a new compound of the composition Cs[Sn(SO₃F)₅] is formed and identified by the Mossbauer spectrum as a novel structural type with an oligomeric anion. Structural conclusions are based on vibrational spectra (Raman and 1R), 119Sn Mossbauer spectra and solution studies in HSO₃F via conductivity and NMR (19F and 119Sn) measurements. Attempted synthesis of Sn(II)Sn(IV)(SO₃F)₆ was not successful.